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Resul ts  a re  shown of a study concerning the c r i t i ca l  f i lm boiling of var ious  cryogenic  liquids. 
The phys ica l  m e c h a n i s m  of this p r o c e s s  is  ana lyzed and r ecommenda t ions  a re  made for  ca lcu-  
lat ing it. 

In s e v e r a l  s tudies  concerned  with the second c r i t i ca l  boiling mode it  has been shown by expe r imen t  
that the c r i t i ca l  t e m p e r a t u r e  T c r  2 depends on the p r o p e r t i e s  of the wall m a t e r i a l  and is  in many  cases  
higher  than the c r i t i ca l  t e m p e r a t u r e  of the boiling liquid T c r  [1-3]. This  evidence can be explained nei ther  
by the t he rma l  r e s i s t ance  of the wall  no r  f r o m  the standpoint of hydrodynamic  and the rmodynamic  m e -  
chan i sms  of the c r i t i ca l  boil ing mode. 

In this study the au thors  have developed a phys ica l  model  of the phenomenon and t e s t  r e su l t s  a re  p r e -  
sented here  re la t ing  to the c r i t i ca l  f i lm boiling of c ryogenic  liquids under  nonsteady cooling conditions. * 

The n e c e s s a r y  conditions for  c r i t i ca l  f i lm boiling a re  that the in te rphase  boundary becomes  hydrody-  
namica l ly  unstable [4] while the liquid r e m a i n  the rmodynamica l ly  s table  upon contact  with the wall  [5]. The 
c h a r a c t e r  of the c r i t i ca l  mode depends on which of these two f ac to r s  is  the governing one. 

If the in te rphase  boundary  becom es  unstable at  a suff icient ly high wall  t e m p e r a t u r e ,  then there  will 
occur  in te rmi t t en t  contacts  between liquid and wall. At the contact  boundary the t e m p e r a t u r e  will then r each  
some level  Tcb which, to the f i r s t  approximat ion ,  can be found by solving the p r o b l e m  of t r ans ien t  heat  
conduction for  semiiaf in i te  l aye r s  of liquid and a semiinfini te  wall with ini t ial  t e m p e r a t u r e s  TLo and Two 
r e s p e c t i v e l y  [6]: 

Two-- TLo Tob = Tt~ + 1 S (~SZ- (1) 
~ + , /  ~ 

If  the local  t e m p e r a t u r e  at  the contact  boundary between liquid and wall  exceeds  the l imi t  of r ec t a -  
s table superhea t  Tls,  t h e n m o m e n t a r y e f f e r v e s c e n c e  will occur ,  t" If  Tcb ~ Tls,  however ,  then the t ime of 
contact  between liquid and wall  will be longer  and the t h e r m a l  flux will i nc r ea se  as  a r e su l t  of t r ans ien t  heat  
conduction into the liquid and as  a r e s u l t  of bubble boiling --  the flux having sufficient  t ime now to develop. 
When bubble boiling occurs ,  Tcb becom es  lower  than e s t ima ted  accord ing  to Eq. (1). Consequently,  c r i t i ca l  
f i lm  boil ing is  poss ib le  at  Tcb -< Tls  even if  the mean wall  t e m p e r a t u r e  Two = T e r  > Tls.  

The p reced ing  ana lys i s  sugges ts  that the t e m p e r a t u r e  of c r i t i ca l  boiling T c r  2 may  depend on the t h e r m o -  
phys ica l  p r o p e r t i e s  of the liquid and of the wall, on the s tate  v a r i a b l e s  of the liquid, and on the conditions 
of i t s  contact  with the wall  (wettability, sur face  roughness ,  geometry) .  The a im  of our  expe r imen ta l  study 
was to e s t ab l i sh  the re la t ion  between Tcr2 and all  these fac tors .  

*Results  obtained in the f i r s t  pa r t  of this study were p re sen ted  in [8]. 
Tin the case  of c ryogenic  liquids, a contact  las ts  for  10-3-10 -6 sec and the e f f e rvesc ing  l ayer  is 10-5-10 -~ 
c m  thick. 
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Fig. i .  Typical  var ia t ion  of the 
wall  t e m p e r a t u r e  T(~ and of the 
t h e r m a l  flux q (kW/m 2) with t ime 
T ( sec) .  
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The t e s t s  were  p e r f o r m e d  in t h e r m a l l y  insulated conta iners  under  a tmosphe r i c  p r e s s u r e .  The t e s t  
l iquids were  ni t rogen,  oxygen, F reon-12 ,  Freon-13 ,  and Freon-22 .  The act ive conta iner  segments  were  
ve r t i c a l  tubular  o r  annular  charmels made of va r ious  m a t e r i a l s  (s ta in less  s teel ,  copper ,  duralumin,  
magnes ium and t i tanium al loys ,  and Tef lon-coa ted  steel) ,  of va r ious  shapes,  and of va r ious  deg rees  of 
sur face  roughness .  On the t h e r m a l l y  insula ted {outside) sur face  of the tube wall were  stuck c o p p e r - c o n -  
s tantan the rmocoup les  with size 0.1 m m  (diameter)  wi res .  

A t e s t  conta iner  in i t ia l ly  a t  the t e m p e r a t u r e  of s table f i lm boiling was i m m e r s e d  into the liquid. 
While i t  was cooling down, the t e m p e r a t u r e  of the tube wall  at 8-12 sec t ions  and the t e m p e r a t u r e  of the 
liquid were  m e a s u r e d  and recorded ,  as functions of t ime,  with a model  OT-24 osci l lograph.  

Typica l  cu rve s  of t e m p e r a t u r e  and t h e r m a l  flux va r i a t ions  with t ime during cooling a re  shown in 
Fig. 1. 

Cr i t i ca l  f i lm boil ing was a s s u m e d  to s t a r t  a t  the t ime Tcr  2 cor responding  to the min imum value of 
der iva t ive  dT0/dT. The t e m p e r a t u r e  drop a c r o s s  the tube wall  was accounted for  accord ing  to the solution 
to the r e v e r s e  p r o b l e m  of heat  conduction [7]: 

Tcr2 = T~ ('rcr2) -~ 2~-~w ( 1+ 3 Dv~Y~v~ ) dTOd.~ (2) 

(the plus  sign r e f e r r i n g  to boiling on the outside tube sur face  and the minus sign r e f e r r i n g  to boiling on the 
inside tube surface) .  

For  the case  of boiling on the outside of a tube with a wall  th ickness  5 w and coated  with a l ayer  of 
th ickness  6coat,  we have der ived  the following fo rmula  

L a .  -5- Do  + - -  + - -  - - ,  (3) 2ac~ ~coat , d~ 

where  Dcl denotes the d i a m e t e r  to the boundary between base  m a t e r i a l  and coating. 

Each s e r i e s  of t e s t  data obtained under  the same  conditions was evalua ted  s ta t is t ical ly .  The e r r o r  
in de te rmin ing  Tcr due to leakage along the wall  was e s t ima ted  accord ing  to the fo rmula  

U2c~ k ' - d ~ - / , ~ x  ' (4) 

with Ucr denoting the ra te  of the c r i t i ca l  boil ing mode along the tube and calcula ted  by a graphica l  d i f fe ren-  
t iat ion of function Tcr  2 = f(z). 

Including the a c c u r a c y  of m e a s u r e m e n t  and data evaluat ion,  the nominal  e r r o r  in calculat ing the 
t e m p e r a t u r e  di f ference (Tcr2--T 0) did not exceed  • 

P r e l i m i n a r y  t e s t s  have shown that  the t emFera tu re  of  c r i t i ca l  boiling does not depend on the depth 
of tube i m m e r s i o n  in the liquid no r  on the axial  coordinate  of a section.  The ef fec t  of surface  roughness  
was examined  on the same act ive  conta iner  segment  of g rade  1Khl8N9T s tee l  tubing with an init ial  sur face  
finish V6, f i r s t  pol ished to V14 and then roughed to V1. No re la t ion  between the T c r  2 point and the sur face  
roughness  was detec ted  during boil ing of liquid ni t rogen.  This could be explained by the fact  that  the s u r -  
face a s p e r i t i e s  were  s m a l l e r  than the mean  th ickness  of the vapor  f i lm.  In the case  of c ryogenic  liquids 
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Fig. 2. T e m p e r a t u r e  of c r i t i ca l  
f i lm boiling of liquid ni t rogen,  as  
a function of the th ickness  of grade  
F P - 3  Teflon coat ing on a s ta in less  
s tee l  tube 6 ~ m ) .  

with a wetting angle 0 close to 0 ~ in contact  with the wall, the va l leys  were  comple te ly  fi l led with liquid 
and were  thus e l imina ted  as  addit ional vapor  nucleat ion cen te r s .  

The effect  of geome t r i ca l  f a c t o r s  on c r i t i ca l  f i lm boiling was examined  on  liquid ni t rogen in tubes 4, 
6, 10,20, and 40 m m  in d i am e t e r  as  well  as  in annular  gaps  1.7, 2.7, and 4.7 m m  wide (De 3.4, 5.4, and 
9.4 m m  respec t ive ly) ,  a lso  in a large pool around a tube with an outside d i a m e t e r  D = 1.6 ram. In the l as t  
case  and in gaps  of an equivalent  d i am e t e r  D e > 6 ram, c r i t i ca l  boiling o c c u r r e d  at  the same  Tcr2 point. 
In gaps  with D e < 6 m m ,  the Tcr2 point  dropped as  the d i ame te r  was decreased .  This could be explained 
by a higher  f requency  of contacts  between liquid and wall at  a gap size approaching  the cap i l l a ry  constant  
for  a given liquid substance 4a/g(PL--PV), which d e t e r m i n e s  the g e o m e t r i c a l  p a r a m e t e r s  of sur face  waves.  

The e f fec t  of subheat  on the t e m p e r a t u r e  of c r i t i ca l  boiling fo r  a given liquid was examined  while s teel  
su r f ace s  were  cooled in liquid ni trogen,  F reon-12 ,  and Freon-22 .  We have found that the e f fec t  of subheat  
may  become weaker  with a dec rease  in the p a r a m e t e r  (pck) w, inasmuch as  the ef fec t  o f t h e r m a l f l u x  (due to 
a l r e a d y  developed bubble boiling) on lower ing the Tcr  2 point becomes  s t ronger .  The ef fec t  of the t h e r m o -  
phys ica l  p r o p e r t i e s  of the wall m a t e r i a l  was examined  with liquid n i t rogen and Freon-13  boil ing in con-  
ruiner  segments  of var ious  ma te r i a l s .  It has  been found that the Tc r  2 point r i s e s  with inc reas ing  subheat  
of the liquid and with a dec reas ing  t h e r m a l  ac t iv i ty  coeff icient  4(pck) w of the wall. As the subheat  i n c r e a s e s  
(i, e . ,  as  the t e m p e r a t u r e  of the liquid drops),  the same  Tcb t e m p e r a t u r e  at  the contact  boundary between 
liquid and wall  will be e s t ab l i shed  at  a higher  mean  wall  t e m p e r a t u r e  Two. A wall  m a t e r i a l  with a lower  
value of 4(pcX) w will r each  the same Tcb t e m p e r a t u r e  at  a higher  Two t e m p e r a t u r e  than a wall  m a t e r i a l  
with a higher  value of 4 (pcX)w. 
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Fig. 3. Generalization of test data pertaining to the 
t e m p e r a t u r e  of c r i t i ca l  f i lm boiling: copper  and n i t r o -  
gen (1), F reon-13  (2), F reon-22  (3), F reon-12  (4), 
s t ee l  tube and ni t rogen (5), F reon-13  (6), F reon-22  
(7), F reon-12  (8), grade  FI~-3 coating and ni t rogen 
(9), Freon-13  (10), a luminum and wate r  (11), s tee l  
and wa te r  (12), g l a s s  and wate r  (13), a luminum and 
ethanol  (14), s tee l  and ethanol  (15), g lass  and ethanol 
(16), ca lcula t ions  accord ing  to Eq. (1) (I). Each point  
on the graph  r e p r e s e n t s  the ave rage  value f r o m  al l  
t e s t s  with a given value of the ra t io  (pCl)L/(PeX) w. 
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The re la t ion  between the T c r  2 point and the th ickness  5coat of a low-( thermal)  conductivity grade 
FP-3  coat ing on a s ta in less  s tee l  tube was examined  in a specia l  exper iment .  The tes t  r e su l t s  shown in 
Fig. 2 indicate that the Tcr2 point c e a s e s  to depend on 5coat  when 5coat  >- 90/~m. An explanation for  this 
can be found in the F ou r i e r  number  for  the coat ing Focoat  = a coat  Tc/5~oat  ~ 0.25 with 5coat >- 90pro and actual  
contact  t imes  r c between liquid and wall under such conditions. In this case  the t he rma l  signal does not 
have sufficient  t ime to r each  the meta l l i c  base  and the coating behaves  as  if  i t  were  infinitely thick. 

When 6coat  < 90 #m,  then Fo > 0.25 and, because  of the heat  coming f r o m  the meta l l ic  base ,  the 
contact  is  in te r rup ted  within a t ime sho r t e r  than r c. The heat  t r a n s f e r  abates  and, consequently,  the Tcr2 
point drops.  The condition that Fo = 0.25 for  6coat  = 90t~m h a s y i e l d e d a n a p p r o x i m a t e  lengthofT c = 0.01 sec. 
The t e s t  values  for  the Tc r  2 point  of five c ryogenic  liquids and six wall m a t e r i a l s  (including coat ings with 
Focoat  < 0.25) have been genera l i zed  by the equation 

[ ([C~)L ]~ (Dc~.)L Tcr2-- To = t.65 ~- 2.5 + �9 (5) 
T k - r n (pcL) W (Pc~) w 

This is  shown in Fig. 3. 

Fo rmula  (5) is  appl icable to the following range  of p a r a m e t e r  values:  

l0 -3 -1,0; Pk = 0.02 -- 0.03; 

c L (Tn-- TL__) = 0 - -  0.2. 
r 

In Fig. 3 a r e  also shown t e s t  data f r o m  [3], obtained in a study of c r i t i ca l  f i lm boiling in the sp h e r i -  
cal  s tate.  A v e r y  in te res t ing  fac t  has been es tab l i shed  in these e x p e r i m e n t s  over  this en t i re  range  of p a r a -  
m e t e r  va lues ,  name ly  that the ra t io  of Tcr2- -T  0 to the t e m p e r a t u r e  difference cor responding  to the m a x i -  
m u m  the rma l  flux point on the boiling curve  qw = f(Tw--T0) is constant  and that  (Tcr2--T) / (Tcr l - -T0)  = 1,6 
within a *20% accuracy .  The Tcr  1 point  i s  usual ly  r e g a r d e d  as the t e m p e r a t u r e  of c r i t i ca l  bubble boiling. 
With Eq. (5), i t  now becomes  poss ib le  to calcula te  T c r  1 as  well. The T c r  1 point is  found f r o m  tes ts ,  as  
the point on the T w = f(r) cu rve  where a T w / a r  and qw a re  both min imum (Fig. 1). 

T is  
p is  
c i s  
A is  
a is  
6 is  
r is  
z i s  
e i s  
r i s  

the t e m p e r a t u r e ,  ~ K; 
the densi ty;  
the specif ic  heat;  
t he rm a l  conductivity;  
the t h e rm a l  diffusivity;  
the wall  th ickness ;  
the t ime;  
the axial  coordinate ;  
the coeff icient  of sur face  tension; 
the la tent  heat  of evaporat ion.  

N O T A T I O N  

S u b s c r i p t s  

w r e f e r s  
cb r e f e r s  
L r e f e r s  
V r e f e r s  
c r  r e f e r s  
o r e f e r s  
coat  r e f e r s  
e r e f e r s  
I s  r e f e r s  
n r e f e r s  

to wall; 
to contact  boundary  between liquid and wall; 
to liquid; 
to vapor ;  
to c r i t i ca l  mode;  
to outside sur face ;  
to coating; 
to equivalent  dimension;  
t o  l imi t  of me tas t ab le  superheat ;  
to beginning of t ime count. 
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